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Traditionally, multi-source information system (MsIS) is typically integrated into a single 
information table for knowledge acquisition. Therefore, discovering knowledge directly 
from MsIS without information loss is a valuable research direction. In this paper, we 
propose the generalized multi-granulation double-quantitative decision-theoretic rough 
set of multi-source information system (MS-GMDQ-DTRS) to handle this issue. First, 
we propose a generalized multi-granulation rough set model for MsIS (MS-GMRS) as 
the basis of other models. In this model, each single information system is treated 
as a granular structure. Next, we combine MS-GMRS with double-quantitative decision-
theoretic rough set to obtain two new models. They have better fault tolerance capability 
compared with MS-GMRS. Furthermore, we propose corresponding algorithms to calculate 
the approximation accuracy of the proposed models. Experiments are carried out on four 
datasets downloaded from UCI. Experimental results show that the two new models have 
better fault tolerance in directly acquiring knowledge from MsIS.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

As the information age continues to evolve, data form becomes more complex. This has promoted the development 
of some knowledge representation forms for complex data. Among these representation forms, multi-source information 
system (MsIS) [1] is an important representative, which is a family of homogeneous single source information systems. 
In real-world applications, the MsIS is widely used in various fields, such as natural language processing [2], extracting 
trips [3], energy consumption prediction [4], deep learning [5] and so on. In recent years, multi-source fusion [6–11], as 
a common method for dealing with MsIS, has been widely concerned, which can integrate information from MsIS into a 
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single information table, acquire knowledge, and extract rules. This topic has attracted the attention of researchers because 
of its wide applications.

Integrating MsIS into a single information table is the most common multi-source fusion strategy. Then knowledge is 
acquired through the obtained information table. The integration method of MsIS is a necessary prerequisite for processing 
MsIS. In recent years, many multi-source fusion methods have been proposed. Particularly, Xu et al. proposed a multi-source 
fusion method based on information entropy [6,8] and information source selection principle [7]. In these works, the multi-
source fusion method uses a metric to select reliable information from a MsIS for integration into a single information 
table. In fact, the essence of this method is to integrate the description of objects from all information tables in MsIS into 
one classic information table. This is called integrating MsIS from the perspective of objects. It is worth noting that in the 
process of this integration, information loss will inevitably occur. Therefore, how to discover knowledge directly from MsIS 
without information loss motivates this study. In this paper, we focus on introduce the multi-granulation rough set theory 
into multi-source fusion.

Multi-granulation rough set is an important theory in granular computing. The concept of granular computing has been 
widely concerned since it was proposed by Zadeh [12]. Recently, Yao [13] proposed three-way granular computing for pro-
cessing information by integrating granular computing and three-way decision. From the perspective of granular computing, 
in the universe, an equivalence relation is a granular structure, multiple equivalence relations are multiple granular struc-
tures. In real-world applications, an object set needs to be described by multiple relations according to the user’s needs 
or target of problem handling. To meet the actual needs, Qian et al. [14] proposed the theoretical framework of multi-
granulation rough set (MGRS), which was used to process an information table with multiple granular structure. In recent 
years, the MGRS model has been widely extended and applied [15–21]. Yang et al. [22] proposed a multi-level granular 
structure-based sequential three-way approach for solving multi-class decision issues. Attribute reduction based on single 
criterion is useless for complex problems. To address this issue, Li et al. [23] presented a multi-objective attribute reduc-
tion method. To solve linguistic information-based multiple attribute group decision making issue, Sun et al. [24] proposed 
three-way approach in the framework of decision-theoretic rough set.

Multi-granulation rough set theory provides a new way for information fusion. From the perspective of information 
fusion, the objective of the MGRS is to integrate information from one information table with multiple granular structures 
into the approximations of a target concept. In such an information table, the granular structure is usually composed of 
multiple attributes. Thus an information fusion strategy based on the idea of multi-granulation is called fusing information 
from the perspective of attributes. In fact, each single information system in MsIS can be regarded as a granular structure. 
Inspired by the above, we argue that it is a feasible method to integrate MsIS based on multi-granulation rough set theory. 
It is worth pointing out that this method can directly generate approximations of a target concept in MsIS, thus avoiding 
information loss.

However the MGRS model is too strict or too loose in describing approximations, it does not take into account the 
situation that the minority is subordinate to the majority. To overcome this deficiency, Xu et al. [25] proposed the the-
oretical framework of generalized multi-granulation rough set (GMRS), which is the extension of MGRS model. The key 
constituent of this model is to use an information level β ∈ (0.5, 1] to control objects selection. By adjusting this parameter, 
the objects can be positively described in most classifications, and the objects that may be described below the corre-
sponding level are deleted. So the GMRS model has better practicality. Based on this model, Qian et al. [26] proposed a 
multiple thresholds-based generalized multi-granulation sequential three-way decision model for solving the issue of multi-
granulation structure. Considering the advantages of the GMRS model, this paper exploits this model to deal with MsIS. 
Therefore, we build a new model, called generalized multi-granulation rough set model of MsIS (MS-GMRS), to acquire the 
knowledge of MsIS.

In order to improve the fault tolerance capability of the MS-GMRS model, we combine this model with double-
quantitative decision-theoretic rough set [27]. Then we obtain two new models, called two kinds of generalized 
multi-granulation double-quantitative decision-theoretic rough set model for MsIS (MS-GMDQ-DTRS). Double-quantitative 
decision-theoretic rough set, as an important extension of Pawlak rough set theory, has been widely studied [28–30]. The 
Pawlak rough set theory [31] is an important mathematical tool, which has been widely applied to attribute reduction 
[32–36], uncertainty measurement [37,38], and decision theory [39,40], cost-sensitive learning [41–46], rough data anal-
ysis [47] etc. However, the Pawlak rough set model has limitation, which is sensitive to noisy data. Since the degree of 
intersection between target set and knowledge granules is not considered, the Pawlak rough set model has no fault tol-
erant effect in processing information. To solve this issue, many meaningful works about the extension of Pawlak rough 
set model have been investigated. Among these extended models, double-quantitative decision-theoretic rough set model 
is an important representative, which is built by combining the graded rough set model [48] and the decision-theoretic 
rough set model [49]. These two rough set models have good fault tolerance, but their quantitative relations are different. 
In the graded rough set model, the absolute quantitative relation between target set and knowledge granules is considered, 
but the relative quantitative relation between them is neglected. In contrast, the decision-theoretic rough set model con-
siders relative quantitative relation between target set and knowledge granules, while ignoring the absolute quantitative 
relation. To complement each other, it is necessary and valuable to combine the two quantitative models. In addition, in the 
decision-theoretic rough set, Yao et al. [49] offered an appropriate semantic explanation for decision-making process. This 
shows that the double-quantitative decision-theoretic rough set not only has strong fault tolerance, but has a reasonable 
decision-making process. This is the main reason why this model is exploited in this paper.
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The main contributions of the work are four-folds. First, we build the generalized multi-granulation rough set model 
for MsIS and its relevant properties are investigated and proved. Second, based on the proposed model, we introduce 
the double-quantitative decision-theoretic rough set to obtain two new models, called two kinds of generalized multi-
granulation double-quantitative decision-theoretic rough set model of MsIS. Meanwhile, the respective decision rules are 
presented. Third, we discuss the relations between the three models mentioned above and verify them through an illus-
trative case. Fourth, we respectively define the approximation accuracy of the three models and propose the corresponding 
algorithm, the objective is to compare the fault tolerance of the proposed models. Experiments on four data sets from UCI 
show that the fault tolerance capability of the proposed models.

The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3 presents the MS-MRS 
model and proposes two MS-GMDQ-DTRS models based on it. Meanwhile, relevant properties and relations of the proposed 
models are investigated and proved. Section 4 presents an illustrative case for verifying the relevant properties and relations. 
Section 5 sets up the experiment and discusses the results. Section 6 concludes the work and outlines the future research.

2. Preliminaries

In this section, we briefly introduce the some basic concepts of Pawlak rough set [31] and some of its extended models 
[25,27,48,49].

2.1. Pawlak rough set

Let I S = (U , AT , V , f ) be an information system, where U = {x1, x2, . . . , xn} is a non-empty and finite set of objects, 
AT is a non-empty and finite set of attributes, V = ⋃

a∈AT Va , Va is the domain of attribute a, and f : U × AT → V
is an information function, f (x, a) ∈ Va (a ∈ AT ). For any A ⊆ AT , an indiscernibility relation is R A = {(x, y) ∈ U × U |∀a ∈
A, fa(x) = fa(y)}. The R A is called an equivalence relation, which can generate a partition of U , denoted by U/R A = {[x]A |x ∈
U }. The [x]A represents the equivalence class of x with respect to R A . The Pawlak approximation space [31] is (U , R A), 
briefly written as (U , R). For any X ⊆ U , the lower and upper approximations of X are

R(X) = {x ∈ U |[x]R ⊆ X}, R(X) = {x ∈ U |[x]R ∩ X �= ∅}.
The positive region, negative region, and boundary region of X are P O S(X) = R(X), N EG(X) = (R(X))c , and BN D(X) =

R(X) − R(X). The approximation accuracy and roughness of X are αR(X) = |R(X)|/|R(X)| and ρR(X) = 1 − αR(X), where 
| • | represents cardinality of a set.

Let D S = (U , AT ∪ DT , V , f ) be a decision system, where AT is a set of conditional attributes, DT is a set of decision 
attributes. The U/DT = {D1, D2, . . . , Dm} is the partition of the universe U on decision attributes. The lower and upper 
approximations of the partition U/DT are

R(U/DT ) = R(D1) ∪ R(D2) ∪ · · · ∪ R(Dm), R(U/DT ) = R(D1) ∪ R(D2) ∪ · · · ∪ R(Dm).

For U/DT , the approximation accuracy is

αR(U/DT ) =
∑

Di∈U/DT |R(Di)|∑
Di∈U/DT |R(Di)|

.

2.2. Some extended rough sets models

(1) The graded rough set (GRS).
The GRS [48] mainly describes the absolute quantitative relation between knowledge granules and basic concepts. The 

upper and lower approximations with grade k ∈ N are

Rk(X) = {x ∈ U ||[x]R ∩ X | > k}, Rk(X) = {x ∈ U ||[x]R | − |[x]R ∩ X | ≤ k}.
The positive region, negative region, and boundary region of X are P O S(X) = Rk(X), N EG(X) = (Rk(X))c , and BN D(X) =

Rk(X) − Rk(X).
(2) The decision-theoretic rough set (DTRS).
The DTRS proposed a way about how to make decision under minimum Bayesian expectation risk [49]. Based on the 

idea of three-way decisions, the DTRS describes the decision-making process with a state set � and an action set A. The 
� = {X, Xc}, where X and Xc denote that x ∈ X and x ∈ Xc , respectively. The A = {aP , aB , aN}, where aP , aB , and aN

represent three actions about deciding x ∈ P O S(X), x ∈ BN D(X), and x ∈ N EG(X), respectively. Let λP P , λB P , and λN P

denote the losses caused by take actions aP , aB , and aN , respectively, when x ∈ X . Let λP N , λBN , and λN N denote the losses 
caused by take the same when x ∈ Xc . Given the loss function, for any x ∈ [x]R , the expected loss for different actions are
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R(aP |[x]R) = λP P P (X |[x]R) + λP N P (Xc|[x]R),

R(aB |[x]R) = λB P P (X |[x]R) + λBN P (Xc|[x]R),

R(aN |[x]R) = λN P P (X |[x]R) + λN N P (Xc|[x]R),

where P (X |[x]R) = |X ∩ [x]R |/|[x]R | and P (Xc |[x]R) = 1 − P (X |[x]R).
According to Bayesian decision procedure, minimum-risk decision rules are
(P ) If R(aP |[x]R) ≤ R(aB |[x]R) and R(aP |[x]R) ≤ R(aN |[x]R), decide x ∈ P O S(X),
(B) If R(aB |[x]R) ≤ R(aP |[x]R) and R(aB |[x]R) ≤ R(aN |[x]R), decide x ∈ BN D(X),
(N) If R(aN |[x]R) ≤ R(aP |[x]R) and R(aN |[x]R) ≤ R(aB |[x]R), decide x ∈ N EG(X).
Taking into account the actual situations, there is an ordered relation between the decision cost values, i.e., λP P ≤ λB P <

λN P and λN N ≤ λBN < λP N . Then the above rules are re-expressed as
(P ) If P (X |[x]R) ≥ α and P (X |[x]R) ≥ γ , decide x ∈ P O S(X),
(B) If P (X |[x]R) ≤ α and P (X |[x]R) ≥ β , decide x ∈ BN D(X),
(N) If P (X |[x]R) ≥ β and P (X |[x]R) ≤ γ , decide x ∈ N EG(X),

where

α = λP N − λBN

(λP N − λBN) + (λB P − λP P )
,β = λBN − λN N

(λBN − λN N) + (λN P − λB P )
, γ = λP N − λN N

(λP N − λN N) + (λN P − λP P )
.

If decision costs values meet the condition: (λN P − λB P )(λP N − λBN ) > (λB P − λP P )(λBN − λN N), then we can get 0 ≤
β < γ < α ≤ 1. Then the rules of DTRS are

(P ) If P (X |[x]R) ≥ α, decide x ∈ P O S(X),
(B) If β < P (X |[x]R) < α, decide x ∈ BN D(X),
(N) If P (X |[x]R) ≤ β , decide x ∈ N EG(X).
In addition, according to the above rules, the upper and lower approximations of the DTRS model are

R(α,β)(X) = {x ∈ U |P (X |[x]R) > β}, R(α,β)(X) = {x ∈ U |P (X |[x]R) ≥ α}.
The positive region, negative region, and boundary region of X are P O S(X) = R(α,β)(X), N EG(X) = (R(α,β)(X))c , 

BNG(X) = R(α,β)(X) − R(α,β)(X).
(3) The double-quantitative decision-theoretic rough set (Dq-DTRS).
Both DTRS and GRS have strong fault tolerance, so they can not be ignored. By introducing absolute quantitative in-

formation in DTRS, two kinds of double-quantitative DTRS (Dq-DTRS) (i.e., DqI-DTRS and DqII-DTRS) are proposed [27], 
respectively.

i. The DqI-DTRS
The DqI-DTRS is made up of (U , R(α,β), Rk). For any X ⊆ U , the upper and lower approximations of X are

R(α,β)(X) = {x ∈ U |P (X |[x]R) > β}, Rk(X) = {x ∈ U ||[x]R | − |[x]R ∩ X | ≤ k}.
The positive region, negative region, and upper and lower boundary region of X are P O S I (X) = R(α,β)(X) ∩ Rk(X), 
N EG I (X) = (R(α,β)(X) ∪ Rk(X))c , U BN I (X) = R(α,β)(X) − Rk(X), LBN I (X) = Rk(X) − R(α,β)(X). Then, the following deci-
sion rules are

(P I ) If x ∈ X satisfies P (X |[x]R) > β and |[x]R | − |[x]R ∩ X | ≤ k, then x ∈ P O S I (X),
(N I ) If x ∈ X satisfies P (X |[x]R) ≤ β and |[x]R | − |[x]R ∩ X | > k, then x ∈ N EG I (X),
(UbI ) If x ∈ X satisfies P (X |[x]R) > β and |[x]R | − |[x]R ∩ X | > k, then x ∈ U BN I (X),
(LbI ) If x ∈ X satisfies P (X |[x]R) ≤ β and |[x]R | − |[x]R ∩ X | ≤ k, then x ∈ LBN I (X).
ii. The DqII-DTRS
The DqII-DTRS is made up of (U , Rk, R(α,β)). For any X ⊆ U , the upper and lower approximations of X are

Rk(X) = {x ∈ U ||[x]R ∩ X | > k}, R(α,β)(X) = {x ∈ U |P (X |[x]R ) ≥ α}.
Similarly, the positive region, negative region, and upper and lower boundary region of X are P O S I I (X) = Rk(X) ∩ R(α,β)(X), 
N EG I I (X) = (Rk(X) ∪ R(α,β)(X))c , U BN I I (X) = Rk(X) − R(α,β)(X), LBN I I(X) = R(α,β)(X) − Rk(X). Then, decision rules are

(P I I ) If x ∈ X satisfies P (X |[x]R) ≥ α and |[x]R ∩ X | ≤ k, then x ∈ P O S I I (X),
(N I I ) If x ∈ X satisfies P (X |[x]R) < α and |[x]R ∩ X | ≤ k, then x ∈ N EG I I (X),
(UbI I ) If x ∈ X satisfies P (X |[x]R) < α and |[x]R ∩ X | > k, then x ∈ U BN I I (X),
(LbI I ) If x ∈ X satisfies P (X |[x]R) ≥ α and |[x]R ∩ X | ≤ k, then x ∈ LBN I I (X).
(4) Generalized multi-granulation rough set (GMRS).
Given an information system I S = (U , AT , V , f ), for any A ⊆ AT , R A is an equivalence relation on U with respect to 

attribute set A, and U/R A is a partition of U with respect to R A . In the view of granular computing, the R A is seen 
as a granulation, expressed as A. The U/A is a granulation structure with respect to A. In many cases, U is partitioned by 
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multiple equivalence relations R Ai (Ai ⊆ AT , i = 1, 2, . . . , s), which are seen as multiple granulations (i.e., multi-granulation), 
expressed as Ai ⊆ AT , i = 1, 2, . . . , s (s ≤ 2|AT |). For any X ⊆ U ,

S Ai
X (x) =

{
1, if ([x]Ai ⊆ X, i ≤ 2|AT |);
0, otherwise,

where S Ai
X is called support feature function of x for X , which is used to describe the inclusion relation between equivalence 

class [x]Ai and X . The lower and upper approximations [25] of X for 
s∑

i=1
Ai are

GM s∑
i=1

Ai

(X)β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
S Ai

X (x)

s
≥ β

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, GM s∑
i=1

Ai

(X)β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
(1 − S Ai

Xc (x))

s
> 1 − β

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where β is an adjustable standard of information with respect to 
s∑

i=1
Ai . The positive region, negative region, and boundary 

region of X are P O S(X) = GM s∑
i=1

Ai

(X)β , N EG(X) = (GM s∑
i=1

Ai

(X)β)c , BN D(X) = GM s∑
i=1

Ai

(X)β − GM s∑
i=1

Ai

(X)β .

If β = 0, the GMRS model is degenerated into optimistic MGRS model, the lower and upper approximations [25] of X for 
s∑

i=1
Ai are

O M s∑
i=1

Ai

(X)β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
S Ai

X (x)

s
≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, O M s∑
i=1

Ai

(X)β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
(1 − S Ai

Xc (x))

s
> 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

If β = 1, the GMRS model is degenerated into pessimism MGRS model, the lower and upper approximations [25] of X

for 
s∑

i=1
Ai are

P M s∑
i=1

Ai

(X)β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
S Ai

X (x)

s
≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, P M s∑
i=1

Ai

(X)β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
(1 − S Ai

Xc (x))

s
> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

3. MS-GMDQ-DTRS: generalized multi-granulation double-quantitative decision-theoretic rough set model of 
multi-source information system

In this section, a MS-GMRS model is firstly proposed. To further improve the fault tolerance of this model, a pair of 
MS-GMDQ-DTRS models are developed by introducing the double-quantitative decision-theoretic rough set. The decision 
rules for this pair of models are given, respectively. We present relevant properties and relations of the proposed models.

3.1. MS-GMRS: generalized multi-granulation rough set model for multi-source information system

In this subsection, we propose a generalized multi-granulation rough set model for MsIS (MS-GMRS) and its the relevant 
properties are studied. In order to evaluate the fault tolerance of this model, the approximation accuracy is defined. First, 
the definition of MsIS is introduced.

Definition 3.1. [18] A multi-source information system (MsIS) consists of multiple I Si = (U , AT , V i, f i). For any i ∈ N∗ , the 
I Si represents the ith information system of the MsIS. Therefore, a MsIS can be defined as

M S = {I S1, I S2, . . . , I Ss}. (1)

Similarly, a multi-source decision system (MsDS) consists of multiple D Si = (U , AT ∪ DT , V i, f i). For any i ∈ N∗ , D Si repre-
sents the ith decision system of the MsDS. Therefore, a MsDS can be defined as

M D S = {D S1, D S2, . . . , D Ss}. (2)
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Fig. 1. A multi-source information box.

Multiple single-source information systems (decision system) are grouped together to form a MsIS (MsDS) similar to an 
information box, as shown in Fig. 1, where x1, x2, . . . , xn are the objects in the U , a1, a2, . . . , am are the attributes in the 
AT , I S1, I S2, . . . , I Ss are s single information systems that constitute a MsIS. Note: in this paper, the MsIS is isomorphic, 
i.e., all single information systems have the same set of attributes and objects, but in different single information systems, 
the value of the same object under the same attribute may be different.

Definition 3.2. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the MS-GMRS, for any X ⊆ U , the 
lower and upper approximations are defined by

M S-GMM S(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-S S Ii

X (x)

s
≥ ϕ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3)

M S-GMM S(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
(1 − M S-S I Si

Xc (x))

s
> 1 − ϕ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4)

where ϕ ∈ (0.5, 1] is an adjustable information standard with respect to M S , Xc is a complement to X . Under I Si , the 
support feature functions of x ∈ U with respect to X and Xc are

M S-S I Si
X (x) =

{
1, i f ([x]I Si ⊆ X);
0, otherwise.

(5)

M S-S I Si
Xc (x) =

{
1, i f ([x]I Si ∩ X = ∅);
0, i f ([x]I Si ∩ X �= ∅).

(6)

Note that the [x]I Si represents the equivalence class of x with respect to AT in I Si . If X satisfies M S-GMM S (X) =
M S-GMM S (X), the X is a definable target set in MsIS. Conversely, the X is a rough target set. This model is called the 
generalized multi-granulation rough set model of MsIS (MS-GMRS). Then the positive region, negative region, and boundary 
region of X are

P O S(X) = M S-GMM S(X), N EG(X) = (M S-GMM S(X))c, BN D(X) = M S-GMM S(X) − M S-GMM S(X).

Here are two extreme forms of MS-GMRS model, namely pessimism multi-granulation rough set model of MsIS (MS-
PMRS), and optimism multi-granulation rough set model of MsIS (MS-OMRS).

Definition 3.3. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the MS-PMRS model, for any X ⊆ U , 
the lower and upper approximations are defined by

M S-P MM S(X) = {x ∈ U | ∧s
i=1 ([x]I Si ⊆ X)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-S I Si

X (x)

s
≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

; (7)
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M S-P MM S(X) = {x ∈ U | ∨s
i=1 ([x]I Si ∩ X �= ∅)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
(1 − M S-S I Si

Xc (x))

s
> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (8)

The expression of the P O S(X), N EG(X), and BN D(X) of MS-PMRS model are the same as MS-GMRS model.

Definition 3.4. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the MS-OMRS model, for any X ⊆ U , 
the lower and upper approximations are defined by

M S-O MM S(X) = {x ∈ U | ∧s
i=1 ([x]I Si ⊆ X)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-S I Si

X (x)

s
> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

; (9)

M S-O MM S(X) = {x ∈ U | ∨s
i=1 ([x]I Si ∩ X �= ∅)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
(1 − M S-S I Si

Xc (x))

s
≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (10)

The expression of the P O S(X), N EG(X), and BN D(X) of MS-OMRS model are the same as MS-GMRS model.

Proposition 3.1. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i), for any X ⊆ U , ϕ ∈ (0.5, 1]. The following 
conclusions hold:

(1) M S-P MM S (X) ⊆ M S-GMM S (X) ⊆ M S-O MM S (X);

(2) M S-O MM S (X) ⊆ M S-GMM S (X) ⊆ M S-P MM S (X).

Proof. (1) For any x ∈ U , one can prove M S-P MM S (X) ⊆ M S-GMM S (X) through x ∈ M S-P MM S (X) ⇔
s∑

i=1
M S-S

I Si
X (x)

s ≥ 1. 

As ϕ ∈ (0.5, 1], 
s∑

i=1
M S-S

I Si
X (x)

s ≥ 1 ≥ ϕ . Then, x ∈ M S-GMM S (X). Therefore, M S-P MM S (X) ⊆ M S-GMM S (X). Analogously, x ∈

M S-GMM S (X) ⇔
s∑

i=1
M S-S

I Si
X (x)

s ≥ ϕ > 0 ⇒ x ∈ M S-O MM S (X). Therefore, M S-GMM S (X) ⊆ M S-O MM S (X). This conclusion is 
proved.

(2) This conclusion can be proved similarly.

Proposition 3.2. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i), for any X ⊆ U , ϕ ∈ (0.5, 1], the following 
properties are true.

(L1) M S-GMM S (Xc) = (M S-GMM S (X))c ; (U1) M S-GMM S (Xc) = (M S-GMM S (X))c .

(L2) M S-GMM S (X) ⊆ X; (U2) X ⊆ M S-GMM S (X).

(L3) M S-GMM S (∅) = ∅; (U3) M S-GMM S (∅) = ∅.

(L4) M S-GMM S (U ) = U ; (U4) M S-GMM S (U ) = U .

(L5) X ⊆ Y ⇒ M S-GMM S (X) ⊆ M S-GMM S (Y ); (U5) X ⊆ Y ⇒ M S-GMM S (X) ⊆ M S-GMM S (Y ).

(L6) M S-GMM S (X ∩ Y ) ⊆ M S-GMM S (X) ∩ M S-GMM S (Y );

(U6) M S-GMM S (X ∪ Y ) ⊇ M S-GMM S (X) ∪ M S-GMM S (Y ).

(L7) M S-GMM S (X ∪ Y ) ⊇ M S-GMM S (X) ∪ M S-GMM S (Y );

(U7) M S-GMM S (X ∩ Y ) ⊆ M S-GMM S (X) ∩ M S-GMM S (Y ).

Proof. (L1) ∀X ⊆ U , x ∈ M S-GMM S (X) ⇔
s∑

i=1
(1−M S-S

I Si
Xc (x))

s > 1 − ϕ , we have that x ∈ (M S-GMM S (X))c ⇔
s∑

i=1
(1−M S-S

I Si
Xc (x))

s ≤

1 −ϕ ⇔
s∑

i=1
M S-S

I Si
Xc (x)

≥ ϕ ⇔ M S-GMM S (Xc). Therefore, the (L1) is proved. The (U1) can be proved in the same way as (L1).
s
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(L2) ∀x ∈ M S-GMM S (X), we have 

s∑
i=1

M S-S
I Si
X (x)

s ≥ ϕ > 0. Obviously, ∃i ≤ s such that [x]I Si ⊆ X . So, x ∈ X can be obtained. 
Therefore, the (L2) is proved.

(U2) Based on (L1) and (L2), we can get (M S-GMM S (X))c = M S-GMM S (Xc) ⊆ Xc . So X ⊆ M S-GMM S (Xc) can be directly 
proved.

(L3), (U3), (L4), and (U4) can all be directly proved by Eqs. (3), (4).

(L5) ∀x ∈ M S-GMM S (X) ⇒
s∑

i=1
M S-S

I Si
X (x)

s ≥ ϕ . X ⊆ Y ⇒
s∑

i=1
M S-S I Si

X (x) ≤
s∑

i=1
M S-S I Si

Y (x) ⇒
s∑

i=1
M S-S

I Si
Y (x)

s ≥ ϕ . Then, we can 

get x ∈ M S-GMM S (Y ). Therefore, the (L5) is proved. The (U5) can be proved in the same way as (L5).
(L6) Based on the (L5), we can get X ∩ Y ⊆ X ⇒ M S-GMM S (X ∩ Y ) ⊆ M S-GMM S (X) and X ∩ Y ⊆ Y ⇒ M S-GMM S (X ∩

Y ) ⊆ M S-GMM S (Y ). Thus, M S-GMM S (X ∩ Y ) ⊆ M S-GMM S (X) ∩ M S-GMM S (Y ) is proved. Similarly, (U6) can be proved.
(L7) can be directly certified according to (L5). (U7) can be directly certified according to (U5).

For survey the classification ability of MS-GMRS model, the approximation accuracy is defined in MsDS. The specific 
definition is as follows.

Definition 3.5. Let M D S = {D S1, D S2, . . . , D Ss} be a MsDS, where D Si = (U , AT ∪ DT , V i, f i), U/DT = {D1, D2, . . . , Dn} is 
a set of decision classes. In MS-GMRS model, the approximation accuracy of U/DT is defined by

αM D S(U/DT ) =

n∑
j=1

∣∣∣M S-GMM S(D j)

∣∣∣
n∑

j=1

∣∣∣M S-GMM S(D j)

∣∣∣ . (11)

The following we design an algorithm for calculating the approximation accuracy of MS-GMRS model, which is Algo-
rithm 1. The time complexity of this Algorithm 1 is analyzed as : the time complexity of steps 3 - 13 is O (m × s), the time 
complexity of steps 15 - 22 is O (m). Therefore, the time complexity of Algorithm 1 is O ((m × s + m) × n) = O (mns).

3.2. IMS-GMDQ-DTRS: the first kind of generalized multi-granulation double-quantitative decision-theoretic rough set for 
multi-source information system

In this subsection, we proposed the first kind of generalized multi-granulation double-quantitative decision-theoretic 
rough set model of MsIS (IMS-GMDQ-DTRS) by introducing the DqI-DTRS model. The corresponding decision rules of this 
model are investigated.

Definition 3.6. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the IMS-GMDQ-DTRS model, for any 
X ⊆ U , the upper and lower approximations are defined by

M S-GM
I
M S(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-U SII Si

X (x)

s
> 1 − ϕ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (12)

M S-GM I
M S(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-L SII Si

X (x)

s
≥ ϕ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (13)

where ϕ ∈ (0.5, 1] is an adjustable information standard with respect to M S . Under I Si , the upper support feature function 
of x ∈ U with respect to X is

M S-U SII Si
X (x) =

{
1, i f P (X |[x]I Si ) > β;
0, otherwise.

(14)

Under I Si , the lower support feature function of x ∈ U with respect to X is

M S-L SII Si
X (x) =

{
1, i f |[x]I Si | − |[x]I Si ∩ X | ≤ k;
0, otherwise.

(15)
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Algorithm 1: The approximation accuracy is calculated in MS-GMRS model.
Input : M D S = {D S1, D S2, . . . , D Ss}, U/D = {D1, D2, . . . , Dn}, ϕ .
Output : The approximation accuracy αM D S (U/DT ).

1 begin
2 for g = 1 : n do
3 for i = 1 : m do
4 M S-U S(i) ← 0; /* It represents M S-S D Si

D g
(x) */

5 M S-L S(i) ← 0; /* It represents 1 − M S-S D Si
(D g )c (x) */

6 for j = 1 : s do
7 if [xi]D S j ⊆ D g then
8 M S-L S(i) ← M S-L S(i) + 1;
9 end

10 if [xi]D I j ∩ D g �= ∅ then
11 M S-U S(i) ← M S-U S(i) + 1;
12 end
13 end
14 end
15 M S-GMM S (D g) ← ∅; M S-GMM S (D g) ← ∅;
16 for i = 1 : m do
17 if M S-L S(i)

s ≥ ϕ then
18 M S-GMM S (D g) ← M S-GMM S (D g) ∪ {xi};
19 end

20 if M S-U S(i)
s > 1 − ϕ then

21 M S-GMM S (D g) ← M S-GMM S (D g) ∪ {xi};
22 end
23 end
24 end

return : αM D S (U/DT ) ←
n∑

k=1

∣∣∣M S-GMM S (D g )

∣∣∣
n∑

k=1

∣∣∣M S-GMM S (D g )

∣∣∣ .

25 end

If X satisfies M S-GM
I
M S (X) = M S-GM I

M S (X), X is a definable target set in MsIS. Conversely, X is a rough target set. The 
positive region, negative region, upper and lower boundary region of this model are

P O S I(X) = M S-GM
I
M S(X) ∩ M S-GM I

M S(X); N EG I(X) = (M S-GM
I
M S(X) ∪ M S-GM I

M S(X))c;
U BN I(X) = M S-GM

I
M S(X) − M S-GM I

M S(X); LBN I(X) = M S-GM I
M S(X) − M S-GM

I
M S(X).

(16)

Here are two extreme forms of IMS-GMDQ-DTRS model, namely the first kind of pessimism multi-granulation double-
quantitative decision-theoretic rough set model of MsIS (IMS-PMDQ-DTRS), and the first kind of optimism multi-granulation 
double-quantitative decision-theoretic rough set model of MsIS (IMS-OMDQ-DTRS).

Definition 3.7. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the IMS-PMDQ-DTRS, for any X ⊆ U , 
the upper and lower approximations are defined by

M S-P M
I
M S(X) = {x ∈ U | ∨s

i=1 (P (X |[x]I Si ) > β)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-U SII Si

X (x)

s
> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

; (17)

M S-P M I
M S(X) = {x ∈ U | ∧s

i=1 (|[x]I Si | − |[x]I Si ∩ X | ≤ k)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-L SII Si

X (x)

s
≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (18)

The expression of the positive region, negative region, upper and lower boundary region of this model are the same as
IMS-GMDQ-DTRS model.
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Definition 3.8. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the IMS-OMDQ-DTRS model, for any 
X ⊆ U , the upper and lower approximations are defined by

M S-O M
I
M S(X) = {x ∈ U | ∧s

i=1 (P (X |[x]I Si ) > β)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-U SII Si

X (x)

s
≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

; (19)

M S-O M I
M S(X) = {x ∈ U | ∨s

i=1 (|[x]I Si | − |[x]I Si ∩ X | ≤ k)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-L SII Si

X (x)

s
> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (20)

The expression of the positive region, negative region, upper and lower boundary region of this model are the same as
IMS-GMDQ-DTRS model.

Proposition 3.3. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i), for any X ⊆ U , ϕ ∈ (0.5, 1]. The following 
conclusions hold:

(1) M S-P M
I
M S (X) ⊆ M S-GM

I
M S (X) ⊆ M S-O M

I
M S (X);

(2) M S-O M
I
M S (X) ⊆ M S-GM

I
M S (X) ⊆ M S-P M

I
M S (X).

Proof. According to Eqs. (12), (13), (17), (18), (19), (20), the above properties are easily verified.

In what follow, we introduce the decision rules of the proposed models.

Rule 3.1. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). For any X ⊆ U , the decision rules of
IMS-GMDQ-DTRS are
(P I) If |I Si : P (X |[x]I Si ) > β| > s(1 − ϕ), |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| ≥ sϕ , then x ∈ P O S I(X);
(N I) If |I Si : P (X |[x]I Si ) > β| ≤ s(1 − ϕ), |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| < sϕ , then x ∈ N EG I(X);
(U B I) If |I Si : P (X |[x]I Si ) > β| > s(1 − ϕ), |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| < sϕ , then x ∈ U BN I(X);
(LB I) If |I Si : P (X |[x]I Si ) > β| ≤ s(1 − ϕ), |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| ≥ sϕ , then x ∈ LBN I(X).

Considering the idea of pessimism, the decision rules of IMS-PMDQ-DTRS model can be deduced, which are
(P I) If |I Si : P (X |[x]I Si ) > β| ≥ 1, |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| = s, then x ∈ P O S I(X);
(N I) If |I Si : P (X |[x]I Si ) ≤ β| = s, |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| ≥ 1, then x ∈ N EG I(X);
(U B I) If |I Si : P (X |[x]I Si ) > β| ≥ 1, |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| ≥ 1, then x ∈ U BN I(X);
(LB I) If |I Si : P (X |[x]I Si ) ≤ β| = s, |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| = s, then x ∈ LBN I(X).

Similarly, according to the idea of optimism, the decision rules of IMS-OMDQ-DTRS model can be obtained, which are
(P I) If |I Si : P (X |[x]I Si ) > β| = s, |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| ≥ 1, then x ∈ P O S I(X);
(N I) If |I Si : P (X |[x]I Si ) ≤ β| ≥ 1, |I Si : |[x]I Si | − |[x]I Si ∩ X | > k| = s, then x ∈ N EG I(X);
(U B I) If |I Si : P (X |[x]I Si ) > β| = s, |I Si : |[x]I Si | − |[x]I Si ∩ X | > k| = s, then x ∈ U BN I(X);
(LB I) If |I Si : P (X |[x]I Si ) ≤ β| ≥ 1, |I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| ≥ 1, then x ∈ LBN I(X).

Definition 3.9. Let M D S = {D S1, D S2, . . . , D Ss} be a MsDS, where D Si = (U , AT ∪ DT , V i, f i), U/DT = {D1, D2, . . . , Dn} is 
a set of decision classes. In IMS-GMDQ-DTRS model, the approximation accuracy of U/DT is defined by

αI M D S(U/DT ) =

n∑
j=1

∣∣∣M S-GM I
M S(D j)

∣∣∣
n∑

j=1

∣∣∣M S-GM
I
M S(D j)

∣∣∣ . (21)

In order to calculate the approximation accuracy of IMS-GMDQ-DTRS model, we design Algorithm 2. The time complexity 
is similar to that of Algorithm 1.

3.3. IIMS-GMDQ-DTRS: the second kind of generalized multi-granulation double-quantitative decision-theoretic rough set for 
multi-source information system

This subsection introduces the second kind of generalized multi-granulation double-quantitative decision-theoretic rough 
set model (IIMS-GMDQ-DTRS). Then the decision rules of this model are investigated.
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Algorithm 2: The approximation accuracy is calculated in IMS-GMDQ-DTRS model.
Input : M D S = {D S1, D S2, . . . , Dss}, U/D = {D1, D2, . . . , Dn}, ϕ , β , and k.
Output : The approximation accuracy αI M D S (U/DT ).

1 begin
2 for g = 1 : n do
3 for i = 1 : m do
4 M S-U SI(i) ← 0; M S-L SI(i) ← 0;
5 for j = 1 : s do
6 if |[x]D S j | − |[x]D S j ∩ D g | ≤ k then
7 M S-L SI(i) ← M S-L SI(i) + 1;
8 end
9 if P (X|[x]D S j ) > β then

10 M S-U SI(i) ← M S-U SI(i) + 1;
11 end
12 end
13 end

14 M S-GM I
M S (D g) ← ∅; M S-GM

I
M S (D g) ← ∅;

15 for i = 1 : m do
16 if M S-L SI(i)

s ≥ ϕ then
17 M S-GM I

M S (D g) ← M S-GM I
M S (D g) ∪ {xi};

18 end

19 if M S-U SI(i)
s > 1 − ϕ then

20 M S-GM
I
M S (D g) ← M S-GM

I
M S (D g) ∪ {xi};

21 end
22 end
23 end

return : αI M D S (U/D) ←
n∑

k=1

∣∣∣M S-GMI
M S (D g )

∣∣∣
n∑

k=1

∣∣∣M S-GM
I
M S (D g )

∣∣∣ .

24 end

Definition 3.10. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the IIMS-GMDQ-DTRS model, for any 
X ⊆ U , the upper and lower approximations are defined by

M S-GM
II
M S(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-U SIII Si

X (x)

s
> 1 − ϕ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (22)

M S-GM II
M S(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-L SIII Si

X (x)

s
≥ ϕ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (23)

where ϕ ∈ (0.5, 1] is an adjustable information standard with respect to M S . Under I Si , the upper support feature function 
of x ∈ U with respect to X is

M S-U SIII Si
X (x) =

{
1, i f |[x]I Si ∩ X | > k;
0, otherwise.

(24)

Under I Si , the lower support feature function of x ∈ U with respect to X is

M S-L SIII Si
X (x) =

{
1, i f P (X |[x]I Si ) ≥ α;
0, otherwise.

(25)

If X satisfies M S-GM
II
M S (X) = M S-GM II

M S (X), X is a definable target set in MsIS. Conversely, X is a rough target set. The 
positive region, negative region, upper and lower boundary region of this model are

P O S II(X) = M S-GM
II
M S(X) ∩ M S-GMII

M S(X); N EG II(X) = (M S-GM
II
M S(X) ∪ M S-GM II

M S(X))c;
U BN II(X) = M S-GM

II
M S(X) − M S-GM II

M S(X); LBN II(X) = M S-GM II
M S(X) − M S-GM

II
M S(X).

(26)



168 B. Sang et al. / International Journal of Approximate Reasoning 115 (2019) 157–179
Here are two extreme forms of IIMS-GMDQ-DTRS model, namely the second kind of pessimism multi-granulation 
double-quantitative rough set model of MsIS (IIMS-PMDQ-DTRS), and the second kind of optimism multi-granulation double-
quantitative rough set model of MsIS (IIMS-OMDQ-DTRS).

Definition 3.11. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the IIMS-PMDQ-DTRS model, for any 
X ⊆ U , the upper and lower approximations are defined by

M S-P M
II
M S(X) = {x ∈ U | ∨s

i=1 (|[x]I Si ∩ X | > k)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-U SIII Si

X (x)

s
> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

; (27)

M S-P MII
M S(X) = {x ∈ U | ∧s

i=1 (P (X |[x]I Si ) ≥ α)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-L SIII Si

X (x)

s
≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (28)

The positive region, negative region, upper and lower boundary region of this model are the same as IIMS-GMDQ-DTRS 
model.

Definition 3.12. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i). In the IIMS-OMDQ-DTRS model, for any 
X ⊆ U , the upper and lower approximations are defined by

M S-O M
II
M S(X) = {x ∈ U | ∧s

i=1 (|[x]I Si ∩ X | > k)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-U SIII Si

X (x)

s
≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

; (29)

M S-O M II
M S(X) = {x ∈ U | ∨s

i=1 (P (X |[x]I Si ) ≥ α)} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ U

∣∣∣∣∣
s∑

i=1
M S-L SIII Si

X (x)

s
> 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (30)

The positive region, negative region, upper and lower boundary region of this model are the same as IIMS-GMDQ-DTRS 
model.

Proposition 3.4. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i), for any X ⊆ U , ϕ ∈ (0.5, 1]. The following 
conclusions hold:

(1) M S-P M
II
M S (X) ⊆ M S-GM

II
M S (X) ⊆ M S-O M

II
M S (X);

(2) M S-O M
II
M S (X) ⊆ M S-GM

II
M S (X) ⊆ M S-P M

II
M S (X).

Proof. According to Eqs. (22), (23), (27), (28), (29), (30), the above properties are easily verified.

The following the decision rules of the proposed models are presented.

Rule 3.2. Let M S = {I S1, I S2, . . . , I Ss} be a MsIS, where I Si = (U , AT , V i, f i), for any X ⊆ U . The decision rules of
IIMS-GMDQ-DTRS are
(P II) If |I Si : |[x]I Si ∩ X | > k| > s(1 − ϕ), |I Si : P (X |[x]I Si ) ≥ α| ≥ sϕ , then x ∈ P O S II(X);
(N II) If |I Si : |[x]I Si ∩ X | > k| ≤ s(1 − ϕ), |I Si : P (X |[x]I Si ) ≥ α| < sϕ , then x ∈ N EG II(X);
(U B II) If |I Si : |[x]I Si ∩ X | > k| > s(1 − ϕ), |I Si : P (X |[x]I Si ) ≥ α| < sϕ , then x ∈ U BN II(X);
(LB II) If |I Si : |[x]I Si ∩ X | > k| ≤ s(1 − ϕ), |I Si : P (X |[x]I Si ) ≥ α| ≥ sϕ , then x ∈ LBN II(X).

Combining the idea of pessimism, the decision rules of IIMS-PMDQ-DTRS model can be deduced, which are
(P II) If |I Si : |[x]I Si ∩ X | > k| ≥ 1, |I Si : P (X |[x]I Si ) ≥ α| = s, then x ∈ P O S II(X);
(N II) If |I Si : |[x]I Si ∩ X | ≤ k| = s, |I Si : P (X |[x]I Si ) ≥ α| ≥ 1, then x ∈ N EG II(X);
(U B II) If |I Si : |[x]I Si ∩ X | > k| ≥ 1, |I Si : P (X |[x]I Si ) ≥ α| ≥ 1, then x ∈ U BN II(X);
(LB II) If |I Si : |[x]I Si ∩ X | ≤ k| = s, |I Si : P (X |[x]I Si ) ≥ α| = s, then x ∈ LBN II(X).

Similarly, based on the idea of optimism, the decision rules of IIMS-OMDQ-DTRS model can be obtained, which are
(P II) If |I Si : |[x]I Si ∩ X | ≤ k| = s, |I Si : P (X |[x]I Si ) ≥ α| ≥ 1, then x ∈ P O S II(X);
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Algorithm 3: The approximation accuracy is calculated in IIMS-GMDQ-DTRS model.
Input : M D S = {D S1, D S2, . . . , D Ss}, U/D = {D1, D2, . . . , Dn}, ϕ , α, and k.
Output : The approximation accuracy αI I M D S (U/DT ).

1 begin
2 for g = 1 : n do
3 for i = 1 : m do
4 M S-U SII(i) ← 0; M S-L SII(i) ← 0;
5 for j = 1 : s do
6 if P (X|[x]D S j ) ≥ α then
7 M S-L SII(i) ← M S-L SII(i) + 1;
8 end
9 if |[x]D S j ∩ D g | > k then

10 M S-U SII(i) ← M S-U SII(i) + 1;
11 end
12 end
13 end

14 M S-GM II
M S (D g) ← ∅; M S-GM

II
M S (D g) ← ∅;

15 for i = 1 : m do
16 if M S-L SII(i)

s ≥ ϕ then
17 M S-GM II

M S (D g) ← M S-GM II
M S (D g) ∪ {xi};

18 end

19 if M S-U SII(i)
s > 1 − ϕ then

20 M S-GM
II
M S (D g) ← M S-GM

II
M S (D g) ∪ {xi};

21 end
22 end
23 end

return : αI I M D S (U/D) ←
n∑

k=1

∣∣∣M S-GM II
M S (D g )

∣∣∣
n∑

k=1

∣∣∣M S-GM
II
M S (D g )

∣∣∣ .

24 end

(N II) If |I Si : |[x]I Si ∩ X | ≤ k| ≥ 1, |I Si : P (X |[x]I Si ) < α| = s, then x ∈ N EG II(X);
(U B II) If |I Si : |[x]I Si ∩ X | ≤ k| = s, |I Si : P (X |[x]I Si ) < α| = s, then x ∈ U BN II(X);
(LB II) If |I Si : |[x]I Si ∩ X | ≤ k| ≥ 1, |I Si : P (X |[x]I Si ) ≥ α| ≥ 1, then x ∈ LBN II(X).

Definition 3.13. Let M D S = {D S1, D S2, . . . , D Ss} be a MsDS, where D Si = (U , AT ∪ DT , V i, f i), U/DT = {D1, D2, · · · , Dn}
is a set of decision classes. In IIMS-GMDQ-DTRS model, the approximation accuracy of U/DT is defined by

αI I M D S(U/DT ) =

n∑
j=1

∣∣∣M S-GM II
M S(D j)

∣∣∣
n∑

j=1

∣∣∣M S-GM
II
M S(D j)

∣∣∣ . (31)

The following the Algorithm 3 is designed to calculate the approximation accuracy of IIMS-GMDQ-DTRS model, and its 
time complexity is similar to that of Algorithm 1.

3.4. The relations between models

In this subsection, we discuss the inner relations between the MS-GMRS model and a pair of MS-GMDQ-DTRS models. 
Further, the relations between the decision regions of two MS-GMDQ-DTRS models are explored.

(1) The inner relations between the proposed models.
a. When β = 0, k = 0, the IMS-GMDQ-DTRS model degenerates to MS-GMRS model, i.e.,

(M S-GM
I
M S(X), M S-GM I

M S(X))
β=0,k=0−−−−−→ (M S-GMM S(X), M S-GMM S(X)).

Since β = 0, k = 0, the upper support feature function M S-U SII Si
X (x) degenerates to 1 − M S-S I Si

Xc (x), and the lower sup-

port feature function M S-L SII Si
X (x) degenerates to M S-S I Si

X (x). Therefore, we have M S-GM
I
M S (X) = M S-GMM S (X) and 

M S-GM I
M S(X) = M S-GMM S (X). So the relation a. holds. That is to say, IMS-GMDQ-DTRS model is an extension of MS-

GMRS model.
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When β > 0, k > 0, the fault tolerance capability of the IMS-GMDQ-DTRS model is higher than that of the MS-
GMRS model, i.e., αI M D S (U/DT ) ≥ αM D S (U/DT ). Since for any X ∈ U/DT , according to Eqs. (3), (4), (12), (13), we 
can get M S-GM

I
M S(X) ⊆ M S-GMM S (X), M S-GM I

M S(X) ⊇ M S-GMM S (X). According to Eqs. (11), (21), it is easy to get 
αI M D S (U/DT ) ≥ αM D S (U/DT ). The higher the approximation accuracy of the model, the stronger the fault tolerance ca-
pability of the model. Thus the fault tolerance of IMS-GMDQ-DTRS model is superior to MS-GMRS model.

b. When α = 1, k = 0, the IIMS-GMDQ-DTRS model also degenerates to MS-GMRS model, i.e.,

(M S-GM
II
M S(X), M S-GM II

M S(X))
α=1,k=0−−−−−→ (M S-GMM S(X), M S-GMM S(X)).

Because α = 1, k = 0, the upper support feature function M S-U SIII Si
X (x) degenerates to 1 − M S-S I Si

Xc (x), and the lower sup-

port feature function M S-L SIII Si
X (x) also degenerates to M S-S I Si

X (x). Thus, we have M S-GM
II
M S(X) = M S-GMM S (X) and 

M S-GM II
M S (X) = M S-GMM S (X). So the relation b. holds. Similarly, IIMS-GMDQ-DTRS model is also an extension of MS-

GMRS model.
When α < 1, k > 0, the fault tolerance capability IIMS-GMDQ-DTRS model is higher than that of the MS-GMRS model, 

i.e., αI I M D S(U/DT ) ≥ αM D S (U/DT ). Since for any X ∈ U/DT , according to Eqs. (3), (4), (22), (23), we obtain the conclusion 
that M S-GM

II
M S(X) ⊆ M S-GMM S (X), M S-GM II

M S(X) ⊇ M S-GMM S (X). Based on Eqs. (11), (31), we obtain the conclusion 
that αI I M D S (U/DT ) ≥ αM D S (U/DT ). Similarly, the fault tolerance of IIMS-GMDQ-DTRS model is also better than that of 
MS-GMRS model.

c. When α = 1, β = 0, k = 0, two MS-GMDQ-DTRS models degenerate to MS-GMRS model.
When α = 1, β = 0, k = 0, based on the relations a. and b., these three models are equivalent, i.e.,

(M S-GM
I
M S(X), M S-GM I

M S(X))

β=0,k=0−−−−−→ (M S-GMM S(X), M S-GMM S(X))
α=1,k=0←−−−−− (M S-GM

II
M S(X), M S-GM II

M S(X)).

For the same reason as a. and b., the IMS-PMDQ-DTRS model degenerates to MS-PMRS model and IMS-OMDQ-DTRS model 
degenerates to MS-OMRS model. The IIMS-PMDQ-DTRS model degenerates to MS-PMRS model and IIMS-OMDQ-DTRS model 
degenerates to MS-OMRS model.

When α < 1, β > 0, k > 0, the fault tolerance capability of two MS-GMDQ-DTRS models are higher than that of the 
MS-GMRS model, i.e., αI M D S(U/DT ) ≥ αM D S (U/DT ) and αI I M D S (U/DT ) ≥ αM D S (U/DT ). Based on the conclusions of a.
and b., the conclusion can be easily proved. Therefore, the fault tolerance capability of two MS-GMDQ-DTRS models are 
superior to MS-GMRS model in MsDS.

(2) The relations between the decision regions of two MS-GMDQ-DTRS models.
Based on DTRS model, if loss function satisfies (λN P −λB P )(λP N −λBN ) > (λB P −λP P )(λBN −λN N), we have 0 ≤ β < α ≤

1. We discuss the relations between different regions in two MS-GMDQ-DTRS models under different conditions of α and β
while k keeps unchanged.

a. When α + β = 1, the relations of the decision regions are

(I) P O S I(X) = N EG II(Xc); (II) N EG I(X) = P O S II(Xc); (III) U BN I(X) = U BN II(Xc); (IV) LBN I(X) = LBN II(Xc).

Proof. First, by considering the support feature function, we can get P (X |[x]I Si ) > β ⇔ P (Xc|[x]I Si ) < 1 − β , |[x]I Si | −|[x]I Si ∩ X | ≤ k ⇔ |[x]I Si ∩ Xc| ≤ k. Due to β = 1 − α, P (X |[x]I Si ) > β ⇔ P (Xc|[x]I Si ) < α can be obtained. So we 
can get |I Si : P (X |[x]I Si ) > β| > s(1 − ϕ) ⇔ |I Si : P (Xc|[x]I Si ) < α| > s(1 − ϕ) ⇔ |I Si : P ((Xc)|[x]I Si ) ≥ α| < sϕ and 
|I Si : |[x]I Si | − |[x]I Si ∩ (X)| ≤ k| ≥ sϕ ⇔ |I Si : |[x]I Si ∩ (Xc)| ≤ k| ≥ sϕ ⇔ |I Si : |[x]I Si ∩ (Xc)| > k| ≤ s(1 − ϕ). So we can get 
M S-GM

I
M S (X) ∩ M S-GM I

M S(X) ⇔ (M S-GM
II
M S(Xc) ∪ M S-GM II

M S(Xc))c . Therefore, P O S I(X) = N EG II(Xc) is certified. The 
proof of (II), (III), and (VI) are similar to that of (I).

b. When α + β < 1, the relations of the decision regions are

(I) P O S I(X) ⊇ N EG II(Xc); (II) N EG I(X) ⊆ P O S II(Xc); (III) U BN I(X) ⊇ U BN II(Xc); (IV) LBN I(X) ⊆ LBN II(Xc).

Proof. Similarly, based on the support feature function, we can get P (X |[x]I Si ) > β ⇔ P (Xc|[x]I Si ) < 1 − β , |[x]I Si | −|[x]I Si ∩ X | ≤ k ⇔ |[x]I Si ∩ Xc | ≤ k. Then for |I Si : P (X |[x]I Si)>β | > s(1 − ϕ) ⇔ |I Si : P (Xc|[x]I Si ) < 1 − β| > s(1 − ϕ) and 
|I Si : |[x]I Si | −|[x]I Si ∩ X | ≤ k| ≥ sϕ ⇔ |I Si : |[x]I Si ∩ (Xc)| ≤ k| ≥ sϕ are obtained. Simultaneously, |I Si : P (Xc|[x]I Si ) < 1 −β| >
s(1 − ϕ) ⇔ |I Si : P (Xc|[x]I Si ) ≥ 1 − β| < sϕ and |I Si : |[x]I Si ∩ (Xc)| ≤ k| ≥ sϕ ⇔ |I Si : |[x]I Si ∩ (Xc)| > k| ≤ s(1 − ϕ) hold. 
Since α < 1 − β , |I Si : P ((Xc)|[x]I Si ) ≥ α| < sϕ ⇒ |I Si : P (Xc|[x]I Si ) ≥ 1 − β| < sϕ and |I Si : |[x]I Si ∩ (Xc)| > k| ≤ s(1 − ϕ) ⇔
|I Si : |[x]I Si ∩ (Xc)| > k| ≤ s(1 − ϕ) hold. So we get M S-GM

I
M S (X) ∩ M S-GM I

M S(X) ⇐ (M S-GM
II
M S (Xc) ∪ M S-GM II

M S(Xc))c . 
Thus the P O S I(X) ⊇ N EG II(Xc) is certified. The (II), (III), and (VI) may be proofed similarly as (I).
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Table 1
The decision regions relations of two MS-GMDQ-DTRS models.

Cases Relations

α + β = 1 P O S I (X) = N EG I I (Xc) N EG I (X) = P O S I I (Xc) U BN I (X) = U BN I I (Xc) LBN I (X) = LBN I I (Xc)

α + β < 1 P O S I (X) ⊇ N EG I I (Xc) N EG I (X) ⊆ P O S I I (Xc) U BN I (X) ⊇ U BN I I (Xc) LBN I (X) ⊆ LBN I I (Xc)

α + β > 1 P O S I (X) ⊆ N EG I I (Xc) N EG I (X) ⊇ P O S I I (Xc) U BN I (X) ⊆ U BN I I (Xc) LBN I (X) ⊇ LBN I I (Xc)

Table 2
A multi-source decision system.

U D S1 D S2 D S3 D S4

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 d

x1 1 2 2 1 1 2 2 1 1 2 1 1 1 2 2 1 1
x2 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 1 1
x3 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 0
x4 0 1 1 1 1 1 1 1 0 1 2 1 0 1 2 0 1
x5 2 1 1 2 0 1 1 1 1 1 1 1 2 2 1 1 0
x6 0 1 1 0 0 1 1 1 0 1 2 1 1 1 2 0 1
x7 1 1 2 1 2 2 1 1 1 2 1 1 1 2 1 1 0
x8 1 1 1 0 2 2 1 1 1 1 1 1 1 1 1 0 1
x9 2 1 1 0 2 2 1 1 2 1 2 1 2 1 2 1 0
x10 1 1 1 0 1 1 1 1 2 1 2 1 0 1 2 0 0

c. When α + β > 1, the relations of the decision regions are

(I) P O S I(X) ⊆ N EG II(Xc); (II) N EG I(X) ⊇ P O S II(Xc); (III) U BN I(X) ⊆ U BN II(Xc); (IV) LBN I(X) ⊇ LBN II(Xc).

Proof. Similarly, according to the support feature function, we can get P (X |[x]I Si ) > β ⇔ P (Xc|[x]I Si ) < 1 − β , |[x]I Si | −|[x]I Si ∩ X | ≤ k ⇔ |[x]I Si ∩ Xc| ≤ k. Next, for |I Si : P (X |[x]I Si ) > β| > s(1 − ϕ) ⇔ |I Si : P (Xc|[x]I Si ) < 1 − β| > s(1 − ϕ), 
|I Si : |[x]I Si | − |[x]I Si ∩ X | ≤ k| ≥ sϕ ⇔ |I Si : |[x]I Si ∩ (Xc)| ≤ k| ≥ sϕ can be obtained. Simultaneously, |I Si : P (Xc|[x]I Si ) < 1 −
β| > s(1 −ϕ) ⇔ |I Si : P (Xc|[x]I Si ) ≥ 1 − β| < sϕ , and |I Si : |[x]I Si ∩ Xc| ≤ k| ≥ sϕ ⇔ |I Si : |[x]I Si ∩ (Xc)| > k| ≤ s(1 −ϕ). Since 
α > 1 − β , the |I Si : P (Xc|[x]I Si ) ≥ 1 − β| < sϕ ⇒ |I Si : P ((Xc)|[x]I Si ) ≥ α| < sϕ and |I Si : |[x]I Si ∩ (Xc)| > k| ≤ s(1 − ϕ) ⇔
|I Si : |[x]I Si ∩ (Xc)| > k| ≤ s(1 − ϕ) can be obtained. So we can get M S-GM

I
M S(X) ∩ M S-GM I

M S (X) ⇒ (M S-GM
II
M S(Xc) ∪

M S-GM II
M S(Xc))c . Therefore, P O S I(X) ⊆ N EG II(Xc) is certified. The proof of (II), (III), and (VI) is similar to that of (I).

Intuitively, the relations between the decision regions of two MS-GMDQ-DTRS models in different cases are shown in 
Table 1.

4. Case study

In this section, the conclusions of 3.4 are verified by an case of car detection. The fault tolerance between the proposed 
models is compared by calculating the approximation accuracy values of the proposed models. There are four automobile 
evaluation factories that evaluate 10 cars in terms of fuel consumption, machinery, appearance, and safety performance. 
Then the evaluation grade is divided into upper, middle, and lower. Finally, each car is evaluated as a high quality car or a 
general car. Therefore, the MsDS is constituted by evaluation results.

Let M D S = {D S1, D S2, D S3, D S4} be a MsDS, where D Si = (U , AT ∪ d, V i, f i). The U = {x1, x2, x3, x4, x5, x6, x7, 
x8, x9, x10} stands for ten cars. The AT = {a1, a2, a3, a4}, where a1 stands for fuel consumption, a2 stands for machinery, 
a3 stands for appearance, and a4 stands for safety performance. The V i

AT = {0, 1, 2}, where “0” stands for lower grade, “1” 
stands for middle grade, and “2” stands for upper grade. The d is decision attribute which stands for quality of car. The 
Di

d = {0, 1}, where “0” stands for general car and “1” stands for high quality car. The decision class X = {x1, x2, x4, x6, x8}
is selected as the target set. Let k = 1, ϕ = 0.65. D S1, D S2, D S3, D S4 are the test results of four automobile evaluation 
factories. The MsDS is shown as Table 2.

Table 3 lists the equivalence classes of each object under each source.

4.1. Verification of 3.4 (1)

(1) Verification the conclusion 3.4 (1)-a
According to Eqs. (3), (4), the upper and lower approximations of X in MS-GMRS model are

M S-GMM S(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x10}, M S-GMM S(X) = {x1, x6}.
Assume β = 0.4, k = 1, according to Eqs. (12), (13), the upper and lower approximations of X in the IMS-GMDQ-DTRS model 
are
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Table 3
Statistical results of equivalence classes under each source.

U [x]D S1 [x]D S2 [x]D S3 [x]D S4

x1 x1 x1, x2 x1, x2, x3, x7 x1

x2 x2 x1, x2 x1, x2, x3, x7 x2, x7

x3 x3, x7 x3, x4, x10 x1, x2, x3, x7 x3

x4 x4 x3, x4, x10 x4, x6 x4, x10

x5 x5 x5, x6 x5, x8 x5

x6 x6 x5, x6 x4, x6 x6

x7 x3, x7 x7, x8, x9 x1, x2, x3, x7 x2, x7

x8 x8, x10 x7, x8, x9 x5, x8 x8

x9 x9 x7, x8, x9 x9, x10 x9

x10 x8, x10 x3, x4, x10 x9, x10 x4, x10

Table 4
Three cases of loss function.

α = 0.6, β = 0.4 α = 0.6, β = 0.3 α = 0.7, β = 0.4

aP : accept λP P = 0, λP N = 22 λP P = 0, λP N = 9 λP P = 0, λP N = 13
aB : defer λB P = 12, λBN = 4 λB P = 2, λBN = 6 λB P = 3, λBN = 6
aN : reject λN P = 18, λN N = 0 λN P = 16, λN N = 0 λN P = 12, λN N = 0

M S-GM
I
M S(X) = {x1, x2, x4, x5, x6, x7, x8, x10}, M S-GM I

M S(X) = {x1, x2, x4, x5, x6, x8}.
The above results show that M S-GM

I
M S(X) ⊆ M S-GMM S (X), M S-GM I

M S (X) ⊇ M S-GMM S (X).
Assume β = 0, k = 0, according to Eqs. (12), (13), the upper and lower approximations of X in the IMS-GMDQ-DTRS 

model are

M S-GM
I
M S(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x10}, M S-GM I

M S(X) = {x1, x6}.
This indicates M S-GM

I
M S (X) = M S-GMM S (X), M S-GM I

M S (X) = M S-GMM S (X). Thus the conclusion 3.4 (1)-a is verified by 
the calculation results.

(2) Verification the conclusion 3.4 (1)-b
Assume α = 0.6, k = 1, according to Eqs. (22), (23), the upper and lower approximations of X in the IIMS-GMDQ-DTRS 

model are

M S-GM
II
M S(X) = {x1, x2}, M S-GM II

M S(X) = {x1, x6}.
The results show that M S-GM

II
M S(X) ⊆ M S-GMM S (X), M S-GM II

M S (X) ⊇ M S-GMM S (X).
Assume α = 1, k = 0, according to Eqs. (22), (23), the upper and lower approximations of X in the IIMS-GMDQ-DTRS 

model are

M S-GM
II
M S(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x10}, M S-GM II

M S(X) = {x1, x6}.
This indicates M S-GM

II
M S (X) = M S-GMM S (X), M S-GM II

M S(X) = M S-GMM S (X). Therefore, the conclusion 3.4 (1)-b is veri-
fied by the calculation results.

(3) Verification the conclusion 3.4 (1)-c.
When α = 1, β = 0, k = 0, according to the calculation results of (1) and (2), the upper and lower approximations of the 

proposed models are equal, i.e.,

M S-GM
I
M S(X) = M S-GMM S(X) = M S-GM

II
M S(X), M S-GM I

M S(X) = M S-GMM S(X) = M S-GM II
M S(X).

That is say that two MS-GMDQ-DTRS models degenerate to MS-GMRS model, that is, the conclusion 3.4 (1)-c is verified.

4.2. Verification of 3.4 (2)

In the Bayesian decision procedure, the expert gives the loss function values for three cases in Table 4.
(1) When α + β = 1, α = 0.6, β = 0.4, we verify the conclusion 3.4 (2)-a.
According to Eqs. (12), (13), (16), the upper and lower approximations and decision regions of X in the IMS-GMDQ-DTRS 

model are

M S-GM
I
M S(X) = {x1, x2, x4, x5, x6, x7, x8, x10}, M S-GM I

M S(X) = {x1, x2, x4, x5, x6, x8};
P O S I(X) = {x , x , x , x , x , x }, N EG I(X) = {x , x }, U BN I(X) = {x , x }, LBN I(X) = ∅.
1 2 4 5 6 8 3 9 7 10
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According to Eqs. (22), (23), (26), the upper and lower approximations and decision regions of Xc in the IIMS-GMDQ-DTRS 
model are

M S-GM
II
M S(Xc) = {x3, x7, x9, x10}, M S-GM II

M S(Xc) = {x3, x9};
P O S II(Xc) = {x3, x9}, N EG II(Xc) = {x1, x2, x4, x5, x6, x8}, U BN II(Xc) = {x7, x10}, LBN II(Xc) = ∅.

The above results show that P O S I(X) = N EG II(Xc), N EG I(X) = P O S II(Xc), U BN I(X) = U BN II(Xc), LBN I(X) = LBN II(Xc). 
Thus the conclusion 3.4 (2)-a is verified.

(2) When α + β < 1, α = 0.6, β = 0.3, we verify the conclusion 3.4 (2)-b.
According to Eqs. (12), (13), (16), the upper and lower approximations and decision regions of X in the IMS-GMDQ-DTRS 

model are

M S-GM
I
M S(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x10}, M S-GM I

M S(X) = {x1, x2, x4, x5, x6, x8};
P O S I(X) = {x1, x2, x4, x5, x6, x8}, N EG I(X) = {x9}, U BN I(X) = {x3, x7, x10}, LBN I(X) = ∅.

According to Eqs. (22), (23), (26), the upper and lower approximations and decision regions of Xc in the IIMS-GMDQ-DTRS 
model are

M S-GM
II
M S(Xc) = {x3, x7, x9, x10}, M S-GM II

M S(Xc) = {x3, x9};
P O S II(Xc) = {x3, x9}, N EG II(Xc) = {x1, x2, x4, x5, x6, x8}, U BN II(Xc) = {x7, x10}, LBN II(Xc) = ∅.

The results indicate that P O S I(X) ⊇ N EG II(Xc), N EG I(X) ⊆ P O S II(Xc), U BN I(X) ⊇ U BN II(Xc), LBN I(X) ⊆ LBN II(Xc). 
Thus the conclusion 3.4 (2)-b is verified.

(3) When α + β > 1, α = 0.7, β = 0.4, we verify the conclusion 3.4 (2)-c.
According to Eqs. (12), (13), (16), the upper and lower approximations and decision regions of X in the IMS-GMDQ-DTRS 

model are

M S-GM
I
M S(X) = {x1, x2, x4, x5, x6, x7, x8, x10}, M S-GMI

M S(X) = {x1, x2, x4, x5, x6, x8};
P O S I(X) = {x1, x2, x4, x5, x6, x8}, N EG I(X) = {x3, x9}, U BN I(X) = {x7, x10}, LBN I(X) = ∅.

According to Eqs. (22), (23), (26), the upper and lower approximations and decision regions of Xc in the IIMS-GMDQ-DTRS 
model are

M S-GM
II
M S(Xc) = {x3, x7, x9, x10}, M S-GM II

M S(Xc) = {x9};
P O S II(Xc) = {x9}, N EG II(Xc) = {x1, x2, x4, x5, x6, x8}, U BN II(Xc) = {x3, x7, x10}, LBN II(Xc) = ∅.

The above results show that P O S I(X) ⊆ N EG II(Xc), N EG I(X) ⊇ P O S II(Xc), U BN I(X) ⊆ U BN II(Xc), LBN I(X) ⊇ LBN II(Xc). 
Thus the conclusion 3.4 (2)-c is verified.

4.3. The comparison of approximation accuracy

In this subsection, we verify that the fault tolerance capability of the two MS-GMDQ-DTRS models is better than the 
MS-GMRS model.

(1) The approximation accuracy of the MS-GMRS mode is calculated.
According to Eqs. (3), (4), the upper and lower approximations of X and Xc in the MS-GMRS model are

M S-GMM S(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x10}, M S-GMM S(X) = {x1, x6};
M S-GMM S(Xc) = {x2, x3, x4, x5, x7, x8, x9, x10}, M S-GMM S(Xc) = {x9}.

Based on Eq. (11), the approximation accuracy of MS-GMRS is αM D S (U/d) = 0.1765.
(2) When α = 0.6, β = 0.4, the approximation accuracy of the two MS-GMDQ-DTRS models are calculated.
According to Eqs. (12), (13), the upper and lower approximations of X and Xc in the IMS-GMDQ-DTRS model are

M S-GM
I
M S(X) = {x1, x2, x4, x5, x6, x7, x8, x10}, M S-GMI

M S(X) = {x1, x2, x4, x5, x6, x8};
M S-GM

I
M S(Xc) = {x2, x3, x4, x5, x7, x8, x9, x10}, M S-GM I

M S(Xc) = {x3, x4, x5, x7, x8, x9, x10}.
Based on Eq. (21), the approximation accuracy of IMS-GMDQ-DTRS model is αI M D S (U/d) = 0.8125.

Similarly, according to Eqs. (22), (23), the upper and lower approximations of X and Xc in the IIMS-GMDQ-DTRS model 
are
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Table 5
Specific information about the data sets.

No. Name Objects Attributes Decision classes Number of sources

1 Liver Disorders 345 7 2 10
2 Balance Scale 625 4 3 10
3 Wireless Indoor Localization 2000 7 4 10
4 Abalone 4177 8 3 10

M S-GM
II
M S(X) = {x1, x2}, M S-GM II

M S(X) = {x1, x6};
M S-GM

II
M S(Xc) = {x3, x7, x9, x10}, M S-GM II

M S(Xc) = {x3, x9}.
Based on Eq. (31), the approximation accuracy of IIMS-GMDQ-DTRS model is αI I M D S (U/d) = 0.6667.

The above results indicate that αI M D S (U/d) > αM D S (U/d) and αI I M D S (U/d) > αM D S (U/d). Therefore, when α + β = 1, 
the conclusion that the fault tolerance capability of the two MS-GMDQ-DTRS models is better than the MS-GMRS model is 
verified.

(3) When α = 0.6, β = 0.3, the approximation accuracy of the two MS-GMDQ-DTRS models are calculated.
According to Eqs. (12), (13), the upper and lower approximations of X and Xc in the IMS-GMDQ-DTRS model are

M S-GM
I
M S(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x10}, M S-GM I

M S(X) = {x1, x2, x4, x5, x6, x8};
M S-GM

I
M S(Xc) = {x2, x3, x4, x5, x7, x8, x9, x10}, M S-GM I

M S(Xc) = {x3, x4, x5, x7, x8, x9, x10}.
Based on Eq. (21), the approximation accuracy of IMS-GMDQ-DTRS model is αI M D S (U/d) = 0.7647.

Similarly, according to Eqs. (22), (23), the upper and lower approximations of X and Xc in the IIMS-GMDQ-DTRS model 
are

M S-GM
II
M S(X) = {x1, x2}, M S-GM II

M S(X) = {x1, x6};
M S-GM

II
M S(Xc) = {x3, x7, x9, x10}, M S-GM II

M S(Xc) = {x3, x9}.
Based on Eq. (31), the approximation accuracy of IIMS-GMDQ-DTRS model is αI I M D S (U/d) = 0.6667.

The above results show that αI M D S (U/d) > αM D S (U/d) and αI I M D S (U/d) > αM D S (U/d). Therefore, when α + β < 1, this 
conclusion is also verified.

(4) When α = 0.7, β = 0.4, the approximation accuracy of two MS-GMDQ-DTRS models are calculated.
According to Eqs. (12), (13), the upper and lower approximations of X and Xc in the IMS-GMDQ-DTRS model are

M S-GM
I
M S(X) = {x1, x2, x4, x5, x6, x7, x8, x10}, M S-GM I

M S(X) = {x1, x2, x4, x5, x6, x8};
M S-GM

I
M S(Xc) = {x2, x3, x4, x5, x7, x8, x9, x10}, M S-GM I

M S(Xc) = {x3, x4, x5, x7, x8, x9, x10}.
Based on Eq. (21), the approximation accuracy of IMS-GMDQ-DTRS model is αI M D S (U/d) = 0.8125.

Similarly, according to Eqs. (22), (23), the upper and lower approximations of X and Xc in the IIMS-GMDQ-DTRS model 
are

M S-GM
II
M S(X) = {x1, x2}, M S-GM II

M S(X) = {x1, x6};
M S-GM

II
M S(Xc) = {x3, x7, x9, x10}, M S-GM II

M S(Xc) = {x9}.
Based on Eq. (31), the approximation accuracy of IIMS-GMDQ-DTRS model is αI I M D S (U/d) = 0.5.

The above results show that αI M D S (U/d) > αM D S (U/d) and αI I M D S (U/d) > αM D S (U/d). Therefore, when α + β > 1, this 
conclusion is also verified.

5. Experimental analysis

In this section, a series of experiments are conducted to show two MS-GMDQ-DTRS models are superior to MS-GMRS 
model in terms of fault tolerance by calculating the approximation accuracy. In this experiment, four data sets were down-
loaded from UCI, which are shown in Table 5. In this paper, all algorithms are coded in MATLAB. The specific operating 
environment (including hardware and software) is shown in Table 6.

In machine learning databases, multi-source data set is not easily available directly. The following two methods are 
proposed to construct multi-source data set by adding noise.

In the original decision system, the value of object x under attribute a is denoted as D S(x, a). The corresponding value of 
the ith decision system is denoted as D Si(x, a). First, generate q numbers (n1, n2, . . . , nq) that satisfy the normal distribution. 
The first method is to add white noise by
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Table 6
Specific information about the operating environment.

Name Model Parameter

CPU Intel(R) Core(TM) i7-8700 3.20 GHz
Platform MATLAB R2016b
System Windows 10 64 bit
Memory DDR3 16.0 GB; 1600 MHz
Hard DSsk MQ01ABD050 500 GB

Fig. 2. The generation process of Multi-source decision system.

D Si(x,a) =
{

D S(x,a) + ni, i f 0 ≤ |ni | ≤ 1,

D S(x,a), otherwise.

Similarly, the second method is to add random noise by

D Si(x,a) =
{

D S(x,a) + ri, i f 0 ≤ |ri | ≤ 1,

D S(x,a), otherwise.

We randomly select 40% of the original data to add white noise, the remaining 20% to add random noise, and the rest 
is unchanged. Then, through the above approach, a MsIS can be obtained. The process of generating MsDS is shown in 
Fig. 2. Every time we generate a MsDS, we have to re-randomly select the noise-added data once in the original data. The 
experiment generates ten MsDSs on the basis of each data set in Table 5.

For each data set in Table 5, the approximation accuracy of the proposed models are calculated by Algorithms 1-3, 
respectively. Let ϕ = 0.65, k = 1, β ∈ [0, 0.5), α ∈ (0.5, 1], the experimental results are shown in Tables 7, 8, 9, 10. The max-
imum values are highlighted in bold-face. In order to facilitate the expression, MS-GMRS model, IMS-GMDQ-DTRS model, 
and IIMS-GMDQ-DTRS model are abbreviated as MS, IMS, and IIMS, respectively. Under different α, β , more detailed change 
trend lines of the approximate accuracy of the proposed models are shown in Figs. 3, 4, 5. In each figure, x-axis is the 
number of MsDS and y-axis is value of approximation accuracy.

From Figs. 3, 4, under different α, β , we observe that for each data sets in Table 5, the approximation accuracy of 
two MS-GMDQ-DTRS models are higher than that of MS-GMRS model. This indicates that the fault tolerance capability of 
the two MS-GMDQ-DTRS models is better than the MS-GMRS model. Furthermore, from Fig. 3, we find a rule that the 
approximate accuracy of IMS-GMDQ-DTRS model decreases as β decreases. This shows that the fault tolerance capability 
of the IMS-GMDQ-DTRS model is related to β and is monotonic. When β = 0.4, the fault tolerance capability reaches 
the maximum. From Fig. 4, we also find a rule that the approximate accuracy of IIMS-GMDQ-DTRS model decreases as 
α increases. This also indicates that the fault tolerance capability of the IIMS-GMDQ-DTRS model is monotonic with α. 
When α = 0.6, the fault tolerance capability reaches the maximum. From Fig. 5, for each data set in Table 5, when α = 0.6, 
β = 0.4, we find that the approximation accuracy of IMS-GMDQ-DTRS model is the highest. This indicates that when the 
fault tolerance capability of all models reaches its maximum, the IMS-GMDQ-DTRS model is higher than that of the other 
two models. Therefore, from the perspective of fault tolerance, the IMS-GMDQ-DTRS model should be preferred to deal with 
the classification and decision-making of multi-source data set.
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Table 7
The approximation accuracy of Liver Disorders data set.

No. MS IMS IIMS

β = 0.4 β = 0.3 β = 0.2 β = 0.1 β = 0 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 0.3168 0.9438 0.8742 0.8092 0.7691 0.7691 0.9146 0.7979 0.6690 0.5784 0.5784
2 0.2321 0.7691 0.6755 0.6295 0.6044 0.5946 0.7199 0.5518 0.4510 0.3894 0.3641
3 0.2256 0.7199 0.6360 0.6004 0.5524 0.5524 0.6807 0.5303 0.4538 0.3351 0.3351
4 0.2707 0.8904 0.8008 0.7490 0.7221 0.7035 0.8474 0.6916 0.5844 0.5227 0.4773
5 0.2278 0.7670 0.6780 0.6360 0.6108 0.6032 0.7066 0.5413 0.4473 0.3846 0.3647
6 0.2946 0.9335 0.8525 0.7829 0.7429 0.7373 0.9057 0.7710 0.6330 0.5421 0.5286
7 0.2212 0.6953 0.6197 0.5822 0.5451 0.5451 0.6466 0.5052 0.4215 0.3272 0.3272
8 0.2432 0.8174 0.7397 0.6911 0.6450 0.6450 0.7590 0.6205 0.5181 0.4066 0.4066
9 0.3244 0.9904 0.8996 0.8565 0.7908 0.7908 0.9856 0.8345 0.7518 0.6079 0.6079
10 0.2897 0.9416 0.8217 0.7679 0.7234 0.7234 0.9208 0.7228 0.6139 0.5116 0.5116

Table 8
The approximation accuracy of Balance Scale data set.

No. MS IMS IIMS

β = 0.4 β = 0.3 β = 0.2 β = 0.1 β = 0 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 0.0939 0.8564 0.7383 0.6542 0.6542 0.6542 0.4867 0.3669 0.2148 0.2148 0.2148
2 0.1008 0.8827 0.8266 0.7021 0.6891 0.6891 0.5430 0.4959 0.2705 0.2459 0.2459
3 0.2301 0.8939 0.7924 0.6862 0.6513 0.6464 0.6990 0.6344 0.5170 0.4320 0.4184
4 0.3416 0.7654 0.6458 0.5254 0.5072 0.4911 0.6378 0.6247 0.5433 0.4685 0.4528
5 0.0923 0.8785 0.8079 0.6619 0.6614 0.6614 0.5521 0.4794 0.2220 0.2181 0.2181
6 0.1096 0.8439 0.7740 0.6397 0.6109 0.6109 0.5778 0.5056 0.3093 0.2389 0.2389
7 0.1058 0.7742 0.7051 0.5900 0.5690 0.5685 0.4975 0.4420 0.2655 0.2101 0.2101
8 0.0968 0.8539 0.7942 0.6703 0.6636 0.6636 0.5129 0.4692 0.2425 0.2306 0.2306
9 0.1230 0.9187 0.8118 0.6839 0.6609 0.6604 0.6219 0.5085 0.3195 0.2722 0.2703
10 0.0989 0.7758 0.6983 0.6009 0.5859 0.5859 0.5080 0.4100 0.2692 0.2103 0.2103

Table 9
The approximation accuracy of Wireless Indoor Localization data set.

No. MS IMS IIMS

β = 0.4 β = 0.3 β = 0.2 β = 0.1 β = 0 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 0.2871 0.6978 0.6773 0.6264 0.5849 0.4923 0.6164 0.5935 0.5045 0.4703 0.3438
2 0.3371 0.7558 0.6843 0.6409 0.5852 0.4817 0.6228 0.5957 0.5459 0.4964 0.3967
3 0.2593 0.6172 0.6005 0.5397 0.4781 0.3541 0.5846 0.5654 0.4711 0.4006 0.3019
4 0.2792 0.6430 0.6219 0.5666 0.4998 0.3730 0.5763 0.5480 0.4507 0.3998 0.3177
5 0.3370 0.7527 0.7247 0.6469 0.6026 0.4893 0.6854 0.6573 0.5507 0.4922 0.3920
6 0.2956 0.6742 0.6485 0.5803 0.5309 0.4175 0.6570 0.6282 0.5306 0.4570 0.3560
7 0.2637 0.6549 0.6350 0.5572 0.4881 0.3704 0.5609 0.5072 0.4306 0.3863 0.3081
8 0.2619 0.6308 0.6057 0.5684 0.4934 0.3699 0.5910 0.5655 0.4860 0.4113 0.3168
9 0.3515 0.7109 0.6860 0.6359 0.5646 0.4256 0.6197 0.5955 0.5325 0.4334 0.3481
10 0.2685 0.6113 0.5917 0.5917 0.4766 0.3580 0.5766 0.5514 0.4523 0.4004 0.3040

Table 10
The approximation accuracy of Abalone data set.

No. MS IMS IIMS

β = 0.4 β = 0.3 β = 0.2 β = 0.1 β = 0 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 0.0798 0.5431 0.4216 0.3532 0.2989 0.2691 0.2937 0.1937 0.1588 0.1068 0.1016
2 0.0799 0.5422 0.4226 0.3605 0.3046 0.2726 0.2954 0.2051 0.1617 0.1082 0.1018
3 0.0805 0.5692 0.4361 0.3612 0.3065 0.2720 0.3152 0.2119 0.1653 0.1091 0.1028
4 0.0847 0.5587 0.4450 0.3808 0.3215 0.2918 0.2941 0.2016 0.1666 0.1157 0.1113
5 0.0796 0.5415 0.4241 0.3546 0.3002 0.2696 0.2923 0.1966 0.1556 0.1068 0.1012
6 0.0796 0.5440 0.4275 0.3599 0.3068 0.2722 0.3022 0.2060 0.1628 0.1075 0.1020
7 0.0796 0.5411 0.4278 0.3579 0.3050 0.2705 0.2982 0.2027 0.1567 0.1071 0.1014
8 0.0805 0.5512 0.4317 0.3620 0.3062 0.2722 0.3040 0.2104 0.1645 0.1091 0.1028
9 0.0800 0.5547 0.4291 0.3596 0.3055 0.2710 0.3040 0.2061 0.1626 0.1081 0.1024
10 0.0811 0.5325 0.4239 0.3600 0.3052 0.2761 0.2852 0.1895 0.1592 0.1083 0.1043
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Fig. 3. The approximation accuracies of MS-GMRS and IMS-GMDQ-DTRS.

Fig. 4. The approximation accuracies of MS-GMRS and IIMS-GMDQ-DTRS.

Fig. 5. The approximation accuracies of MS-GMRS, IMS-GMDQ-DTRS (β = 0.4), and IIMS-GMDQ-DTRS (α = 0.6).

6. Conclusion

In this paper, we proposed a new method to discover knowledge directly from MsIS without information loss. Inspired 
by the generalized multi-granulation rough set theory, this method regards each information system in MsIS as a granular 
structure, and then builds a rough set model to directly generate approximations of the target concept. First, as the basis of 
other models, the generalized multi-granulation rough set model for MsIS (MS-GMRS) was proposed. Second, we combined 
MS-GMRS with double-quantitative decision-theoretic rough set to obtain two new models, called two kinds of generalized 
multi-granulation double-quantization decision-theoretic rough set model of MsIS (MS-GMDQ-DTRS). Simultaneously, we re-
spectively proposed their decision rules. Third, by discussing the relations between the three models, we find that the two 
MS-GMDQ-DTRS models can be degraded to MS-GMRS model. In other word, the two models are two extended forms of the 
MS-GMRS model. We proved that these two new models are more fault tolerant than the MS-GMRS model. Final, the exper-
iment compares fault tolerance of the proposed models by calculating respective approximate accuracy. The experimental 
results show that the two MS-GMDQ-DTRS models have better fault tolerance in acquiring MsIS knowledge compared with 
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MS-GMRS model, especially the first type. In the future, we will further study the attribute reduction approaches and logic 
operations of these three models in MsIS.
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